Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
COVID‐19 severity gradient differentially dysregulates clinically relevant drug processing genes in nasopharyngeal swab samples
Ist Teil von
British journal of clinical pharmacology, 2024-09, Vol.90 (9), p.2137-2158
Ort / Verlag
England
Erscheinungsjahr
2024
Quelle
Wiley-Blackwell subscription journals
Beschreibungen/Notizen
Aim
Understanding how COVID‐19 impacts the expression of clinically relevant drug metabolizing enzymes and membrane transporters (DMETs) is vital for addressing potential safety and efficacy concerns related to systemic and peripheral drug concentrations. This study investigates the impact of COVID‐19 severity on DMETs expression and the underlying mechanisms to inform the design of precise clinical dosing regimens for affected patients.
Methods
Transcriptomics analysis of 102 DMETs, 10 inflammatory markers, and 12 xenosensing regulatory genes was conducted on nasopharyngeal swabs from 50 SARS‐CoV‐2 positive (17 outpatients, 16 non‐ICU, and 17 ICU) and 13 SARS‐CoV‐2 negative individuals, clinically tested through qPCR, in the Greater Toronto area from October 2020 to October 2021.
Results
We observed a significant differential gene expression for 42 DMETs, 6 inflammatory markers, and 9 xenosensing regulatory genes. COVID‐19 severity was associated with the upregulation of AKR1C1, MGST1, and SULT1E1, and downregulation of ABCC10, CYP3A43, and SLC29A4 expressions. Altogether, SARS‐CoV‐2‐positive patients showed an upregulation in CYP2C9, CYP2C19, AKR1C1, SULT1B1, SULT2B1, and SLCO4A1 and downregulation in FMO5, MGST3, ABCC5, and SLCO4C1 compared with SARS‐CoV‐2 negative individuals. These dysregulations were associated with significant changes in the expression of inflammatory and xenosensing regulatory genes driven by the disease. GSTM3, PPARA, and AKR1C1 are potential biomarkers of the observed DMETs dysregulation pattern in nasopharyngeal swabs of outpatients, non‐ICU, and ICU patients, respectively.
Conclusion
The severity of COVID‐19 is associated with the dysregulation of DMETs involved in processing commonly prescribed drugs, suggesting potential disease–drug interactions, especially for narrow therapeutic index drugs.