Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...

Details

Autor(en) / Beteiligte
Titel
Identification of cell surface markers for acute myeloid leukemia prognosis based on multi-model analysis
Ist Teil von
  • Journal of biomedical research, 2024-05, Vol.38 (4), p.397-412
Ort / Verlag
China: Editorial Department of Journal of Biomedical Research
Erscheinungsjahr
2024
Quelle
Free E-Journal (出版社公開部分のみ)
Beschreibungen/Notizen
  • Given the extremely high inter-patient heterogeneity of acute myeloid leukemia (AML), the identification of biomarkers for prognostic assessment and therapeutic guidance is critical. Cell surface markers (CSMs) have been shown to play an important role in AML leukemogenesis and progression. In the current study, we evaluated the prognostic potential of all human CSMs in 130 AML patients from The Cancer Genome Atlas (TCGA) based on differential gene expression analysis and univariable Cox proportional hazards regression analysis. By using multi-model analysis, including Adaptive LASSO regression, LASSO regression, and Elastic Net, we constructed a 9-CSMs prognostic model for risk stratification of the AML patients. The predictive value of the 9-CSMs risk score was further validated at the transcriptome and proteome levels. Multivariable Cox regression analysis showed that the risk score was an independent prognostic factor for the AML patients. The AML patients with high 9-CSMs risk scores had a shorter overall and event-free survival time than those with low scores. Notably, single-cell RNA-sequencing analysis indicated that patients with high 9-CSMs risk scores exhibited chemotherapy resistance. Furthermore, PI3K inhibitors were identified as potential treatments for these high-risk patients. In conclusion, we constructed a 9-CSMs prognostic model that served as an independent prognostic factor for the survival of AML patients and held the potential for guiding drug therapy.
Sprache
Englisch
Identifikatoren
ISSN: 1674-8301
eISSN: 1674-8301, 2352-4685
DOI: 10.7555/JBR.38.20240065
Titel-ID: cdi_proquest_miscellaneous_3061784647
Format
Schlagworte
Original

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX