Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Background and Objective
Chest x‐ray (CXR) remains a core component of health monitoring guidelines for workers at risk of exposure to crystalline silica. There has however been a lack of evidence regarding the sensitivity of CXR to detect silicosis in artificial stone benchtop industry workers.
Methods
Paired CXR and high‐resolution computed tomography (HRCT) images were acquired from 110 artificial stone benchtop industry workers. Blinded to the clinical diagnosis, each CXR and HRCT was independently read by two thoracic radiologists from a panel of seven, in accordance with International Labour Office (ILO) methodology for CXR and International Classification of HRCT for Occupational and Environmental Respiratory Diseases. Accuracy of screening positive (ILO major category 1, 2 or 3) and negative (ILO major category 0) CXRs were compared with identification of radiological features of silicosis on HRCT.
Results
CXR was positive for silicosis in 27/110 (24.5%) workers and HRCT in 40/110 (36.4%). Of the 83 with a negative CXR (ILO category 0), 15 (18.1%) had silicosis on HRCT. All 11 workers with ILO category 2 or 3 CXRs had silicosis on HRCT. In 99 workers ILO category 0 or 1 CXRs, the sensitivity of screening positive CXR compared to silicosis identified by HRCT was 48% (95%CI 29–68) and specificity 97% (90–100).
Conclusion
Compared to HRCT, sensitivity of CXR was low but specificity was high. Reliance on CXR for health monitoring would provide false reassurance for many workers, delay management and underestimate the prevalence of silicosis in the artificial stone benchtop industry.
The use of CXR to screen artificial stone benchtop industry workers for silicosis has low sensitivity compared to HRCT chest, especially for early‐stage disease. Reliance on chest x‐ray for screening will fail to identify many workers with artificial stone silicosis and underestimate the prevalence of respiratory disease in this industry.