Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...

Details

Autor(en) / Beteiligte
Titel
A Two-Stage Training Framework Using Multicontrast MRI Radiomics for IDH Mutation Status Prediction in Glioma
Ist Teil von
  • Radiology. Artificial intelligence, 2024-07, Vol.6 (4), p.e230218
Ort / Verlag
United States: Radiological Society of North America
Erscheinungsjahr
2024
Quelle
Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
Beschreibungen/Notizen
  • Purpose To develop a radiomics framework for preoperative MRI-based prediction of mutation status, a crucial glioma prognostic indicator. Materials and Methods Radiomics features (shape, first-order statistics, and texture) were extracted from the whole tumor or the combination of nonenhancing, necrosis, and edema regions. Segmentation masks were obtained via the federated tumor segmentation tool or the original data source. Boruta, a wrapper-based feature selection algorithm, identified relevant features. Addressing the imbalance between mutated and wild-type cases, multiple prediction models were trained on balanced data subsets using Random Forest or XGBoost and assembled to build the final classifier. The framework was evaluated using retrospective MRI scans from three public datasets (The Cancer Imaging Archive (TCIA, 227 patients), the University of California San Francisco Preoperative Diffuse Glioma MRI dataset (UCSF, 495 patients), and the Erasmus Glioma Database (EGD, 456 patients)) and internal datasets collected from UT Southwestern Medical Center (UTSW, 356 patients), New York University (NYU, 136 patients), and University of Wisconsin-Madison (UWM, 174 patients). TCIA and UTSW served as separate training sets, while the remaining data constituted the test set (1617 or 1488 testing cases, respectively). Results The best-performing models trained on the TCIA dataset achieved area under the receiver operating characteristic curve (AUC) values of 0.89 for UTSW, 0.86 for NYU, 0.93 for UWM, 0.94 for UCSF, and 0.88 for EGD test sets. The best-performing models trained on the UTSW dataset achieved slightly higher AUCs: 0.92 for TCIA, 0.88 for NYU, 0.96 for UWM, 0.93 for UCSF, and 0.90 for EGD. Conclusion This MRI radiomics-based framework shows promise for accurate preoperative prediction of IDH mutation status in patients with glioma. Published under a CC BY 4.0 license.
Sprache
Englisch
Identifikatoren
ISSN: 2638-6100
eISSN: 2638-6100
DOI: 10.1148/ryai.230218
Titel-ID: cdi_proquest_miscellaneous_3058636269
Format
Schlagworte
Original Research

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX