Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 5 von 12

Details

Autor(en) / Beteiligte
Titel
Quantitative analysis of molecular interactions in κ-carrageenan-Isovanillin biocomposite for biodegradable packaging and pharmaceutical applications using NMR, TOF-SIMS, and XPS approach
Ist Teil von
  • Food chemistry, 2024-09, Vol.452, p.139556-139556, Article 139556
Ort / Verlag
England: Elsevier Ltd
Erscheinungsjahr
2024
Quelle
ScienceDirect
Beschreibungen/Notizen
  • This study explores the molecular interactions and structural changes in κ-carrageenan crosslinked with isovanillin to create a biocomposite material suitable for hard capsule and bio-degradable packaging applications. Proton Nuclear Magnetic Resonance (1H NMR) spectroscopy revealed chemical changes in the conjugate molecule, indicating improved electronegativity due to intermolecular hydrogen bonding between κ-carrageenan and isovanillin. Time-of-flight Secondary Ion Mass Spectrometry (ToF-SIMS) analysis revealed enhanced ion intensity due to intermolecular interactions, particularly between sulphate and hydrogen ions. X-ray Photoelectron Spectroscopy (XPS) study demonstrated that κ-carrageenan and isovanillin form stronger hydrogen bonds, with a shift in binding energy indicating higher electronegativity. These findings shed light on the molecular mechanisms that underpin the formation of the biocomposite material, as well as its potential for use in hard capsule and biodegradable packaging materials, addressing the need for sustainable alternatives in the pharmaceutical and packaging industries while also contributing to environmental conservation. •The analysis of κ-carrageenan-isovanillin biocomposite reveals molecular interactions that improve structural comprehension.•XPS demonstrates increased electronegativity, indicating stronger hydrogen bonding between κ-carrageenan and isovanillin.•Physical crosslinking via intermolecular hydrogen bonding enhances performance in the biocomposite.•The findings will advance materials science and bioengineering, and serve as a platform for future study in related domains.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX