Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...

Details

Autor(en) / Beteiligte
Titel
One-step hydrothermal synthesis of vanadium dioxide/carbon core–shell composite with improved ammonium ion storage for aqueous ammonium-ion battery
Ist Teil von
  • Journal of colloid and interface science, 2024-09, Vol.669, p.2-13
Ort / Verlag
United States: Elsevier Inc
Erscheinungsjahr
2024
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • VO2@C core–shell structure is designed and prepared to boost the NH4+ storage of VO2. VO2@C core–shell composite delivers a specific capacity of ∼300 mAh/g at 0.1 A/g, superior to the values of VO2 (∼238 mAh/g). [Display omitted] Aqueous nonmetallic ion batteries have garnered significant interest due to their cost-effectiveness, environmental sustainability, and inherent safety features. Specifically, ammonium ion (NH4+) as a charge carrier has garnered more and more attention recently. However, one of the persistent challenges is enhancing the electrochemical properties of vanadium dioxide (VO2) with a tunnel structure, which serves as a highly efficient NH4+ (de)intercalation host material. Herein, a novel architecture, wherein carbon-coated VO2 nanobelts (VO2@C) with a core–shell structure are engineered to augment NH4+ storage capabilities of VO2. In detail, VO2@C is synthesized via the glucose reduction of vanadium pentoxide under hydrothermal conditions. Experimental results manifest that the introduction of the carbon layer on VO2 nanobelts can enhance mass transfer, ion transport and electrochemical kinetics, thereby culminating in the improved NH4+ storage efficiency. VO2@C core–shell composite exhibits a remarkable specific capacity of ∼300 mAh/g at 0.1 A/g, which is superior to that of VO2 (∼238 mAh/g) and various other electrode materials used for NH4+ storage. The NH4+ storage mechanism can be elucidated by the reversible NH4+ (de)intercalation within the tunnel of VO2, facilitated by the dynamic formation and dissociation of hydrogen bonds. Furthermore, when integrated into a full battery with polyaniline (PANI) cathode, the VO2@C//PANI full battery demonstrates robust electrochemical performances, including a specific capacity of ∼185 mAh·g−1 at 0.2 A·g−1, remarkable durability of 93 % retention after 1500 cycles, as well as high energy density of 58 Wh·kg−1 at 5354 W·kg−1. This work provides a pioneering approach to design and explore composite materials for efficient NH4+ storage, offering significant implications for future battery technology enhancements.
Sprache
Englisch
Identifikatoren
ISSN: 0021-9797
eISSN: 1095-7103
DOI: 10.1016/j.jcis.2024.04.210
Titel-ID: cdi_proquest_miscellaneous_3050941334

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX