Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Es ist ein Fehler in der Kommunikation mit einem externen System aufgetreten. Bitte versuchen Sie Ihre letzte Aktion erneut. Sollte der Fehler bestehen bleiben, setzen Sie sich bitte mit dem Informationszentrum der Bibliothek in Verbindung oder versuchen Sie es später erneut.
Highly Flexible and Superelastic Graphene Nanofibrous Aerogels for Intelligent Sign Language
Ist Teil von
Small (Weinheim an der Bergstrasse, Germany), 2024-08, Vol.20 (34), p.e2400415-n/a
Ort / Verlag
Germany: Wiley Subscription Services, Inc
Erscheinungsjahr
2024
Quelle
Wiley-Blackwell Journals
Beschreibungen/Notizen
Highly flexible and superelastic aerogels at large deformation have become urgent mechanical demands in practical uses, but both properties are usually exclusive. Here a trans‐scale porosity design is proposed in graphene nanofibrous aerogels (GNFAs) to break the trade‐off between high flexibility and superelasticity. The resulting GNFAs can completely recover after 1000 fatigue cycles at 60% folding strain, and notably maintain excellent structural integrity after 10000 cycles at 90% compressive strain, outperforming most of the reported aerogels. The mechanical robustness is demonstrated to be derived from the trans‐scale porous structure, which is composed of hyperbolic micropores and porous nanofibers to enable the large elastic deformation capability. It is further revealed that flexible and superelastic GNFAs exhibit high sensitivity and ultrastability as an electrical sensors to detect tension and flexion deformation. As proof, The GNFA sensor is implemented onto a human finger and achieves the intelligent recognition of sign language with high accuracy by multi‐layer artificial neural network. This study proposes a highly flexible and elastic graphene aerogel for wearable human‐machine interfaces in sensor technology.
The trade‐off between high flexibility and superelasticity of aerogels is broken by designing trans‐scale porous structure composed of hyperbolic micropores and porous nanofibers.