Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 17 von 914
Magnetic resonance in medicine, 2024-09, Vol.92 (3), p.982-996
2024
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
The “hidden noise” problem in MR image reconstruction
Ist Teil von
  • Magnetic resonance in medicine, 2024-09, Vol.92 (3), p.982-996
Ort / Verlag
United States: Wiley Subscription Services, Inc
Erscheinungsjahr
2024
Quelle
Wiley-Blackwell Full Collection
Beschreibungen/Notizen
  • Purpose The performance of modern image reconstruction methods is commonly judged using quantitative error metrics like root mean squared‐error and the structural similarity index, which are calculated by comparing reconstructed images against fully sampled reference data. In practice, the reference data will contain noise and is not a true gold standard. In this work, we demonstrate that the “hidden noise” present in reference data can substantially confound standard approaches for ranking different image reconstruction results. Methods Using both experimental and simulated k‐space data and several different image reconstruction techniques, we examined whether there was correlation between performance metrics obtained with typical noisy reference data versus those obtained with higher‐quality reference data. Results For conventional performance metrics, the reconstructions that matched best with the higher‐quality reference data were substantially different from the reconstructions that matched best with typical noisy reference data. This leads to suboptimal reconstruction results if the performance with respect to noisy reference data is used to select which reconstruction methods/parameters to employ. These issues were reduced when employing alternative error metrics that better account for noise. Conclusion Reference data containing hidden noise can substantially mislead the ranking of image reconstruction methods when using conventional error metrics, but this issue can be mitigated with alternative error metrics.
Sprache
Englisch
Identifikatoren
ISSN: 0740-3194, 1522-2594
eISSN: 1522-2594
DOI: 10.1002/mrm.30100
Titel-ID: cdi_proquest_miscellaneous_3034243816

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX