Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Impact of storm events on disinfection byproduct precursors in a drinking water source in the Northeastern United States
Ist Teil von
Water research (Oxford), 2024-05, Vol.255, p.121445-121445, Article 121445
Ort / Verlag
England: Elsevier Ltd
Erscheinungsjahr
2024
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
•Storm events can increase natural organic matter (NOM) loading rates by more than an order of magnitude.•Dissolved organic carbon (DOC) loading during storm events closely parallels the loading of other organic parameters.•UV254 was a better surrogate indicator than DOC for DBP formation during storm events.•DOC and flow pattern show a strong hysteresis during storm events which is event-specific.
Storm events play a crucial role in organic matter transport within watersheds and can increase the concentration and alter the composition of NOMs and DBP formation potential. To assess the impact that storm events can have on drinking water quality, samples were collected and analyzed across four storm events in the Neversink River, Catskill region, New York in 2019 and 2022. Source water natural organic matter (NOM) was characterized, and the change of NOM quality was evaluated due to storm impacts. During storm events, a high level of NOM mobilization is initiated by heavy precipitation causing overland flow and a rise in the water table. In this way, storms result in increased access to stored NOM pools that are generated during inter-storm periods. A significant correlation was observed between several organic water quality parameters such as UV absorbance (UV254), dissolved organic carbon (DOC) and chlorine demand. Precursors for the total trihalomethanes (TTHM), dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA) exhibited comparable patterns with UV254, DOC, and chlorine demand for four storms. Despite the potential for increased dilution resulting from higher discharges, all organic water quality parameters, including yields of disinfection byproducts (i.e., DBP precursors), exhibited elevated concentrations during periods of higher flows. Three of the four storms showed hysteresis patterns with higher observed concentrations of organic constituents in the falling limb of the hydrographs. Precursors for the nitrogenous DBPs (N-DBPs) were proportional to the DOC for all four storms. The coefficient of determination (R2) for TTHM, DCAA, TCAA with UV254 is higher (R2 0.92–0.98) than corresponding correlations with DOC (R2 0.89–0.92). The R2 for UV254 showed the following hierarchy: DCAA≈TCAA>TTHM. Additionally, the R2 for DOC and specific ultraviolet absorbance (SUVA) had the following hierarchy: DCAA>TCAA>TTHM and TCAA>DCAA>TTHM respectively.
A significant correlation between UV254 and DOC (R = 0.99) for all storms was observed. Chlorine demand also yielded a strong correlation (R = 0.91∼0.98) with UV254 and DOC. This research indicates that a significant and disproportionate export of NOM to source waters occurs during storm events compared to baseflow conditions. Consequently, it is recommended for drinking water treatment facilities to reassess chlorine dosages during these events. Treatment plants can employ UV254 as a tool to determine appropriate chlorine dosages, aiming to mitigate DBP formation in treated waters.
[Display omitted]