Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Although plasma nitriding has been applied successfully to increase the hardness of austenitic stainless steels, the process cycles are long due to the low nitrogen diffusion rate for these steels. An alternative to reduce the nitriding time is to perform a heating treatment after nitriding to prolong the diffusion process. In this work we investigate the properties of plasma nitrided AISI 316 stainless steel after heating post-treatments. The samples were nitrided at 823 K during 3 h. After nitriding, heating post-treatments were performed in a vacuum furnace. The influence of the heating time, ranging from 1 up to 16 h, and heating temperatures, varying from 732 up to 873 K, on the surface properties was investigated. The samples were characterized using microhardness testing, scanning electron microscopy and X-ray diffraction. The nitriding treatment results in a compound layer 44 μm thick with a hardness of 1434 HV
0.1, consisting predominantly of γ'-[Fe
4N] and CrN phases. As expected, an increase of the compound layer thickness and a decrease of the surface hardness with heating time were observed. However, the microhardness profiles show that beneath the surface the layer hardness increases for long treatment times. New phases as Fe
3O
4 and FeCr
2O
4 appear and grow with increasing heating time.