Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 7 von 73

Details

Autor(en) / Beteiligte
Titel
Prediction of MET Overexpression in Lung Adenocarcinoma from Hematoxylin and Eosin Images
Ist Teil von
  • The American journal of pathology, 2024-06, Vol.194 (6), p.1020-1032
Ort / Verlag
United States: Elsevier Inc
Erscheinungsjahr
2024
Quelle
MEDLINE
Beschreibungen/Notizen
  • Mesenchymal epithelial transition (MET) protein overexpression is a targetable event in non-small cell lung cancer and is the subject of active drug development. Challenges in identifying patients for these therapies include lack of access to validated testing, such as standardized immunohistochemistry assessment, and consumption of valuable tissue for a single gene/protein assay. Development of prescreening algorithms using routinely available digitized hematoxylin and eosin (H&E)-stained slides to predict MET overexpression could promote testing for those who will benefit most. Recent literature reports a positive correlation between MET protein overexpression and RNA expression. In this work, a large database of matched H&E slides and RNA expression data were leveraged to train a weakly supervised model to predict MET RNA overexpression directly from H&E images. This model was evaluated on an independent holdout test set of 300 overexpressed and 289 normal patients, demonstrating a receiver operating characteristic area under curve of 0.70 (95th percentile interval: 0.66 to 0.74) with stable performance characteristics across different patient clinical variables and robust to synthetic noise on the test set. These results suggest that H&E-based predictive models could be useful to prioritize patients for confirmatory testing of MET protein or MET gene expression status.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX