Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 18 von 301

Details

Autor(en) / Beteiligte
Titel
Dissolution of resin acids, retene and wood sterols from contaminated lake sediments
Ist Teil von
  • Chemosphere (Oxford), 2006-10, Vol.65 (5), p.840-846
Ort / Verlag
Oxford: Elsevier Ltd
Erscheinungsjahr
2006
Quelle
MEDLINE
Beschreibungen/Notizen
  • The dissolution potency of hydrophobic resin acids (RAs), retene and wood sterols from sediments was studied. These wood extractives and their metabolites are sorbed from pulp and paper mill effluents to downstream sediments. With harmful components like these, sediments can pose a hazard to the aquatic environment. Therefore, sediment elutriates with water were produced under variable conditions (agitation rate and efficiency, time), and concentrations of the dissoluted compounds were analyzed. Both naturally contaminated field sediments and artificially spiked sediments were studied. By vigorous agitation RAs can be released fast from the sediment matrix and equilibrium reached within 3 days. Compared to RAs, desorption of retene from lake sediment was slower and did not completely reach equilibrium in 23 days. Sterols spiked to pristine sediment with a 33-day contact time desorbed faster than those associated authentically with industrial sediment of from a contaminated lake. Simulating the water turbulence adjacent to a sediment surface by low and high rate of agitation in the laboratory, an increase in the mixing rate after 43-day elutriation suddenly released a high amount of wood sterols. The results indicate wide variation between hazardous chemicals in their tendency to dissolution from sediment solids. Erosion and hydrology adjacent to the sediment surface, as well as risks from dredging activities of sediments, may expose lake biota to bioactive chemicals.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX