Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 16 von 81
Journal of molecular modeling, 2024-03, Vol.30 (3), p.90-90, Article 90
2024
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Effect of tensile deformation on the optoelectronic properties of black phosphine-doped lithium atoms
Ist Teil von
  • Journal of molecular modeling, 2024-03, Vol.30 (3), p.90-90, Article 90
Ort / Verlag
Berlin/Heidelberg: Springer Berlin Heidelberg
Erscheinungsjahr
2024
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • Context First-principles calculations based on the generalized gradient approximation gradient and the Perdew-Burke-Ernzerhof function (GGA-PBE generalized function) are carried out on the intrinsic and lithium-doped black phosphine systems to investigate the effects of different uniaxial tensile deformations on the electronic and optical properties of the systems. It is shown that the structural stability of the intrinsic and lithium-doped systems decreases with increasing tensile deformation, and all systems are most stable at 0% tensile deformation. The intrinsic black phosphazene system is a direct band gap semiconductor, and its band gap increases and then decreases with tensile deformation and reaches a maximum value of 1.086 eV at 4%. Lithium doping closes the band gap of the black phosphazene system, which is metallic in nature, but the band gap is opened up when the tensile deformation is 4–6%. From the density of states analysis, the density of states of all systems is basically contributed by the s and p orbitals, with little contribution from the d orbitals, and the contribution from the p orbitals is dominant. From the analysis of optical properties, the increase of tensile deformation causes the absorption peaks of the intrinsic system to redshift then blueshift then redshift, causes the absorption peaks of the lithium-doped system to redshift, and causes the reflection peaks of all systems to redshift. In addition, lithium doping blueshifts the absorption and reflection peaks of the systems compared to the intrinsic black phosphazene system. Methods Using the CASTEP section of the Materials Studio software, first-principle calculations based on density functional theory are done on the top-site doped lithium atoms of monolayer black phosphine under uniaxial stretching deformation in the a-direction, and the generalized gradient approximation gradients and Perdew-Burke-Ernzerhof functions (GGA-PBE generalized functionals) are used for the optimization and approximation process. The optimization parameters are set for the supercell structure: its plane-wave truncation energy is set to 400 eV, its Brillouin zone K-point grid is set to 3*3*3, its self-consistent field iteration accuracy convergence value is 2.0e–6 eV/atom, the convergence basis of its structural optimization is 0.02 eV/ Å, and the convergence of the stress value is 0.05 gpa. During the optimization period, the interaction force between atoms is 0.03 eV/ Å and the atomic displacement is less than 0.001 Å. To eliminate the effect of interlayer forces, a vacuum layer with a thickness of 15 Å is placed in its vertical direction (i.e., c-axis direction).

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX