Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Currently, the concept of engineered tissues depends on the ability of cultured cells to fabricate new tissue around a scaffold. This is inherently slow and expensive and has had limited success so far. We report here a new process for the cell‐independent, controlled engineering of biomimetic scaffolds by rapid removal of fluid from hyperhydrated collagen gel (or other) constructs, using plastic compression (PC). PC fabrication produces dense, cellular, mechanically strong native collagen structures with controllable nano‐ and microscale biomimetic structures. The huge‐scale shrinkage (> 100‐fold) provides the ability to introduce controllable mechanical properties, microlayering, and embossed interface topography without cell participation, but with high cell viability. Critically, this takes minutes rather than the conventional days and weeks. The rapidity and biomimetic potential of the PC fabrication process at the mesoscale opens a new route for the production of biomaterials and patient‐customized tissues. It also represents a new concept in ‘engineering’ tissues.
Cell‐independent, controlled engineering of biomimetic scaffolds can be achieved by rapid fluid removal from hyperhydrated collagen gel via plastic compression. Mechanically strong native collagen with controllable nano‐ and microscale biomimetic structures (see Figure) can be produced over a timescale of minutes rather than the conventional days and weeks, providing promise for rapid production of biomaterials and patient‐customized tissues.