Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...

Details

Autor(en) / Beteiligte
Titel
The exometabolome of microbial communities inhabiting bare ice surfaces on the southern Greenland Ice Sheet
Ist Teil von
  • Environmental microbiology, 2024-02, Vol.26 (2), p.e16574-n/a
Ort / Verlag
Hoboken, USA: John Wiley & Sons, Inc
Erscheinungsjahr
2024
Link zum Volltext
Quelle
MEDLINE
Beschreibungen/Notizen
  • Microbial blooms colonize the Greenland Ice Sheet bare ice surface during the ablation season and significantly reduce its albedo. On the ice surface, microbes are exposed to high levels of irradiance, freeze–thaw cycles, and low nutrient concentrations. It is well known that microorganisms secrete metabolites to maintain homeostasis, communicate with other microorganisms, and defend themselves. Yet, the exometabolome of supraglacial microbial blooms, dominated by the pigmented glacier ice algae Ancylonema alaskanum and Ancylonema nordenskiöldii, remains thus far unstudied. Here, we use a high‐resolution mass spectrometry‐based untargeted metabolomics workflow to identify metabolites in the exometabolome of microbial blooms on the surface of the southern tip of the Greenland Ice Sheet. Samples were collected every 6 h across two diurnal cycles at 5 replicate sampling sites with high similarity in community composition, in terms of orders and phyla present. Time of sampling explained 46% (permutational multivariate analysis of variance [PERMANOVA], pseudo‐F = 3.7771, p = 0.001) and 27% (PERMANOVA, pseudo‐F = 1.8705, p = 0.001) of variance in the exometabolome across the two diurnal cycles. Annotated metabolites included riboflavin, lumichrome, tryptophan, and azelaic acid, all of which have demonstrated roles in microbe–microbe interactions in other ecosystems and should be tested for potential roles in the development of microbial blooms on bare ice surfaces. We present a first characterization of the exometabolome of microbial blooms inhabiting bare ice surfaces in the ablation zone of the southern Greenland Ice sheet. Detected exometabolites include tryptophan, riboflavin, lumichrome, and azelaic acid, which are known to play important roles in microbe–microbe interactions in other ecosystems. Hence, we suggest that chemical signalling may be a thus far unexplored but important control on the development and spatial extent of bare ice surface microbial blooms.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX