Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 19 von 358
Memristor-Based Artificial Chips
ACS nano, 2024-01, Vol.18 (1), p.14-27
2024
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Memristor-Based Artificial Chips
Ist Teil von
  • ACS nano, 2024-01, Vol.18 (1), p.14-27
Ort / Verlag
United States: American Chemical Society
Erscheinungsjahr
2024
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • Memristors, promising nanoelectronic devices with in-memory resistive switching behavior that is assembled with a physically integrated core processing unit (CPU) and memory unit and even possesses highly possible multistate electrical behavior, could avoid the von Neumann bottleneck of traditional computing devices and show a highly efficient ability of parallel computation and high information storage. These advantages position them as potential candidates for future data-centric computing requirements and add remarkable vigor to the research of next-generation artificial intelligence (AI) systems, particularly those that involve brain-like intelligence applications. This work provides an overview of the evolution of memristor-based devices, from their initial use in creating artificial synapses and neural networks to their application in developing advanced AI systems and brain-like chips. It offers a broad perspective of the key device primitives enabling their special applications from the view of materials, nanostructure, and mechanism models. We highlight these demonstrations of memristor-based nanoelectronic devices that have potential for use in the field of brain-like AI, point out the existing challenges of memristor-based nanodevices toward brain-like chips, and propose the guiding principle and promising outlook for future device promotion and system optimization in the biomedical AI field.
Sprache
Englisch
Identifikatoren
ISSN: 1936-0851
eISSN: 1936-086X
DOI: 10.1021/acsnano.3c07384
Titel-ID: cdi_proquest_miscellaneous_2908124701
Format

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX