Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 22 von 63
Precision clinical medicine, 2023-09, Vol.6 (3), p.pbad020-pbad020
2023
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Advances in diagnosis and prediction for aggression of pure solid T1 lung cancer
Ist Teil von
  • Precision clinical medicine, 2023-09, Vol.6 (3), p.pbad020-pbad020
Ort / Verlag
Oxford University Press
Erscheinungsjahr
2023
Quelle
EZB Free E-Journals
Beschreibungen/Notizen
  • Abstract A growing number of early-stage lung cancers presenting as malignant pulmonary nodules have been diagnosed because of the increased adoption of low-dose spiral computed tomography. But pure solid T1 lung cancer with ≤3 cm in the greatest dimension is not always at an early stage, despite its small size. This type of cancer can be highly aggressive and is associated with pathological involvement, metastasis, postoperative relapse, and even death. However, it is easily misdiagnosed or delay diagnosed in clinics and thus poses a serious threat to human health. The percentage of nodal or extrathoracic metastases has been reported to be >20% in T1 lung cancer. As such, understanding and identifying the aggressive characteristics of pure solid T1 lung cancer is crucial for prevention, diagnosis, and therapeutic strategies, and beneficial to improving the prognosis. With the widespread of lung cancer screening, these highly invasive pure solid T1 lung cancer will become the main advanced lung cancer in future. However, there is limited information regarding precision medicine on how to identify these “early-stage” aggressive lung cancers. To provide clinicians with new insights into early recognition and intervention of the highly invasive pure solid T1 lung cancer, this review summarizes its clinical characteristics, imaging, pathology, gene alterations, immune microenvironment, multi-omics, and current techniques for diagnosis and prediction.
Sprache
Englisch
Identifikatoren
ISSN: 2096-5303
eISSN: 2516-1571
DOI: 10.1093/pcmedi/pbad020
Titel-ID: cdi_proquest_miscellaneous_2895699412
Format

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX