Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...

Details

Autor(en) / Beteiligte
Titel
Predicting molecular docking of per- and polyfluoroalkyl substances to blood protein using generative artificial intelligence algorithm DiffDock
Ist Teil von
  • BioTechniques, 2024-01, Vol.76 (1), p.14-26
Ort / Verlag
England: Future Science Ltd
Erscheinungsjahr
2024
Quelle
MEDLINE
Beschreibungen/Notizen
  • This study computationally evaluates the molecular docking affinity of various perfluoroalkyl and polyfluoroalkyl substances (PFAs) towards blood proteins using a generative machine-learning algorithm, DiffDock, specialized in protein–ligand blind-docking learning and prediction. Concerns about the chemical pathways and accumulation of PFAs in the environment and eventually in the human body has been rising due to empirical findings that levels of PFAs in human blood has been rising. DiffDock may offer a fast approach in determining the fate and potential molecular pathways of PFAs in human body. This study demonstrates the capability of generative AI algorithm DiffDock to accelerate protein PFA molecular docking computations that can lead to efficient studies of PFA fate in the human body.
Sprache
Englisch
Identifikatoren
ISSN: 0736-6205
eISSN: 1940-9818
DOI: 10.2144/btn-2023-0070
Titel-ID: cdi_proquest_miscellaneous_2889246375

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX