Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 10 von 23

Details

Autor(en) / Beteiligte
Titel
Microplastics released from disposable medical devices and their toxic responses in Caenorhabditis elegans
Ist Teil von
  • Environmental research, 2023-12, Vol.239, p.117345-117345, Article 117345
Ort / Verlag
Elsevier Inc
Erscheinungsjahr
2023
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • Owing to accelerated urbanization and industrialization, many plastic products have been manufactured and discharged into the environment, causing environmental and public health problems. Plastics in environmental media are further degraded by prolonged exposure to light, heat, mechanical friction, and other factors to form new pollutants called microplastics (MPs). Medical plastics have become a crucial source of plastics in environmental media. However, the release profiles of MPs from medical plastics and their potential ecological and health risks remain unclear. We used optical photothermal infrared spectroscopy to explore the release profiles of eight typical disposable medical devices under high-temperature steam disinfection (HSD). We also evaluated the toxicity of disposable medical devices-derived MPs in Caenorhabditis elegans (C. elegans). Our results showed that the changes in the surface morphology and modification of the disposable medical devices were mainly associated with the material. Polypropylene (PP) and polystyrene (PS) materials exhibited high aging phenomena (e.g., bumps, depressions, bulges and cracks), and HSD broke their oxygen-containing functional groups and carbon chains. By contrast, minor changes in the chemical and physical properties were observed in the polyvinyl chloride (PVC)-prepared disposable medical devices under the same conditions. Further physicochemical characterization indicated that the amount of MPs released from PP-prepared disposable medical devices (P4: 1.27 ± 0.34 × 106) was greater than that from PVC-prepared disposable medical devices (P7: 1.08 ± 0.14 × 105). The particle size of the released MPs was the opposite, PVC-prepared disposable medical devices (P7: 11.45 ± 1.79 μm) > PP-prepared disposable medical devices (P4: 7.18 ± 0.52 μm). Toxicity assessment revealed that disposable medical devices-released MPs significantly increased germ cell apoptosisin C. elegans. Moreover, MPs from PP-prepared disposable medical devices disrupted the intestinal barrier of worms, decreasing their lifespan. Our findings provided novel information regarding the profiles and mechanisms of MP release from disposable medical devices and revealed their potential risks to ecological environment. [Display omitted] •Disposable medical devices could release large amounts of microplastics during human use and disposal.•The release mechanisms of microplastics from different DMDs were clarified by various physical chemistry characterizations.•Evaluated the ecotoxicity of environmental microplastics from disposable medical devices in Caenorhabditis elegans.
Sprache
Englisch
Identifikatoren
ISSN: 0013-9351
eISSN: 1096-0953
DOI: 10.1016/j.envres.2023.117345
Titel-ID: cdi_proquest_miscellaneous_2876636420

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX