Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 8 von 5012

Details

Autor(en) / Beteiligte
Titel
Understanding the Impacts of Molecular and Macromolecular Crowding Agents on Protein–Polymer Complex Coacervates
Ist Teil von
  • Biomacromolecules, 2023-11, Vol.24 (11), p.4771-4782
Ort / Verlag
United States: American Chemical Society
Erscheinungsjahr
2023
Quelle
MEDLINE
Beschreibungen/Notizen
  • Complex coacervation refers to the liquid–liquid phase separation (LLPS) process occurring between charged macromolecules. The study of complex coacervation is of great interest due to its implications in the formation of membraneless organelles (MLOs) in living cells. However, the impacts of the crowded intracellular environment on the behavior and interactions of biomolecules involved in MLO formation are not fully understood. To address this knowledge gap, we investigated the effects of crowding on a model protein–polymer complex coacervate system. Specifically, we examined the influence of sucrose as a molecular crowder and polyethylene glycol (PEG) as a macromolecular crowder. Our results reveal that the presence of crowders led to the formation of larger coacervate droplets that remained stable over a 25-day period. While sucrose had a minimal effect on the physical properties of the coacervates, PEG led to the formation of coacervates with distinct characteristics, including higher density, increased protein and polymer content, and a more compact internal structure. These differences in coacervate properties can be attributed to the effects of crowders on individual macromolecules, such as the conformation of model polymers, and nonspecific interactions among model protein molecules. Moreover, our results show that sucrose and PEG have different partition behaviors: sucrose was present in both the coacervate and dilute phases, while PEG was observed to be excluded from the coacervate phase. Collectively, our findings provide insights into the understanding of crowding effects on complex coacervation, shedding light on the formation and properties of coacervates in the context of MLOs.
Sprache
Englisch
Identifikatoren
ISSN: 1525-7797
eISSN: 1526-4602
DOI: 10.1021/acs.biomac.3c00545
Titel-ID: cdi_proquest_miscellaneous_2875382010

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX