Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 5 von 148
The international journal of biochemistry & cell biology, 2023-11, Vol.164, p.106476-106476, Article 106476
2023
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
MMP13 promotes the osteogenic potential of BMP9 by enhancing Wnt/β-catenin signaling via HIF-1α upregulation in mouse embryonic fibroblasts
Ist Teil von
  • The international journal of biochemistry & cell biology, 2023-11, Vol.164, p.106476-106476, Article 106476
Ort / Verlag
Elsevier Ltd
Erscheinungsjahr
2023
Quelle
Access via ScienceDirect (Elsevier)
Beschreibungen/Notizen
  • Bone morphogenetic protein 9 (BMP9) has been validated as one of the most potent osteoinduction factors, but its underlying mechanism remains unclear. As a member of the matrix metalloproteinase (MMP) family, MMP13 may be involved in regulating the lineage-specific differentiation of mouse embryonic fibroblasts (MEFs). The goal of this study was to determine whether MMP13 regulates the osteoinduction potential of BMP9 in MEFs, which are multipotent progenitor cells widely used for stem cell biology research. In vitro and in vivo experiments showed that BMP9-induced osteogenic markers and/or bone were enhanced by exogenous MMP13 in MEFs, but were reduced by MMP13 knockdown or inhibition. The expression of hypoxia inducible factor 1 alpha (HIF-1α) was induced by BMP9, which was enhanced by MMP13. The protein expression of β-catenin and phosphorylation level of glycogen synthase kinase-3 beta (GSK-3β) were increased by BMP9 in MEFs, as was the translocation of β-catenin from the cytoplasm to the nucleus; all these effects of BMP9 were enhanced by MMP13. Furthermore, the MMP13 effects of increasing BMP9-induced β-catenin protein expression and GSK-3β phosphorylation level were partially reversed by HIF-1α knockdown. These results suggest that MMP13 can enhance the osteoinduction potential of BMP9, which may be mediated, at least in part, through the HIF-1α/β-catenin axis. Our findings demonstrate a novel role of MMP13 in the lineage decision of progenitor cells and provide a promising strategy to speed up bone regeneration.
Sprache
Englisch
Identifikatoren
ISSN: 1357-2725
eISSN: 1878-5875
DOI: 10.1016/j.biocel.2023.106476
Titel-ID: cdi_proquest_miscellaneous_2874834867

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX