Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 8 von 146

Details

Autor(en) / Beteiligte
Titel
Siamese pyramidal deep learning network for strain estimation in 3D cardiac cine-MR
Ist Teil von
  • Computerized medical imaging and graphics, 2023-09, Vol.108, p.102283-102283, Article 102283
Ort / Verlag
United States: Elsevier Ltd
Erscheinungsjahr
2023
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • Strain represents the quantification of regional tissue deformation within a given area. Myocardial strain has demonstrated considerable utility as an indicator for the assessment of cardiac function. Notably, it exhibits greater sensitivity in detecting subtle myocardial abnormalities compared to conventional cardiac function indices, like left ventricle ejection fraction (LVEF). Nonetheless, the estimation of strain poses considerable challenges due to the necessity for precise tracking of myocardial motion throughout the complete cardiac cycle. This study introduces a novel deep learning-based pipeline, designed to automatically and accurately estimate myocardial strain from three-dimensional (3D) cine-MR images. Consequently, our investigation presents a comprehensive pipeline for the precise quantification of local and global myocardial strain. This pipeline incorporates a supervised Convolutional Neural Network (CNN) for accurate segmentation of the cardiac muscle and an unsupervised CNN for robust left ventricle motion tracking, enabling the estimation of strain in both artificial phantoms and real cine-MR images. Our investigation involved a comprehensive comparison of our findings with those obtained from two commonly utilized commercial software in this field. This analysis encompassed the examination of both intra- and inter-user variability. The proposed pipeline exhibited demonstrable reliability and reduced divergence levels when compared to alternative systems. Additionally, our approach is entirely independent of previous user data, effectively eliminating any potential user bias that could influence the strain analyses. •Deep learning framework for automatic myocardial strain estimation from 3D cine-MRI.•Reliable with lower divergence compared to commercial systems.•Fully automatic method, eliminating user bias in strain analysis.•Generalized method, trained and tested on different datasets.
Sprache
Englisch
Identifikatoren
ISSN: 0895-6111
eISSN: 1879-0771
DOI: 10.1016/j.compmedimag.2023.102283
Titel-ID: cdi_proquest_miscellaneous_2850314037

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX