Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 2 von 151
International journal for numerical methods in biomedical engineering, 2023-12, Vol.39 (12), p.e3766-n/a
2023

Details

Autor(en) / Beteiligte
Titel
Single and two‐cells shape analysis from energy functionals for three‐dimensional vertex models
Ist Teil von
  • International journal for numerical methods in biomedical engineering, 2023-12, Vol.39 (12), p.e3766-n/a
Ort / Verlag
Hoboken, USA: John Wiley & Sons, Inc
Erscheinungsjahr
2023
Link zum Volltext
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • Vertex models have been extensively used for simulating the evolution of multicellular systems, and have given rise to important global properties concerning their macroscopic rheology or jamming transitions. These models are based on the definition of an energy functional, which fully determines the cellular response and conclusions. While two‐dimensional vertex models have been widely employed, three‐dimensional models are far more scarce, mainly due to the large amount of configurations that they may adopt and the complex geometrical transitions they undergo. We here investigate the shape of single and two‐cells configurations as a function of the energy terms, and we study the dependence of the final shape on the model parameters: namely the exponent of the term penalising cell‐cell adhesion and surface contractility. In single cell analysis, we deduce analytically the radius and limit values of the contractility for linear and quadratic surface energy terms, in 2D and 3D. In two‐cells systems, symmetrical and asymmetrical, we deduce the evolution of the aspect ratio and the relative radius. While in functionals with linear surface terms yield the same aspect ratio in 2D and 3D, the configurations when using quadratic surface terms are distinct. We relate our results with well‐known solutions from capillarity theory, and verify our analytical findings with a three‐dimensional vertex model. Single cells: we give solutions for the area (perimeter) minimization of spherical (circular) shapes in 3D (2D), and deduce critical values of the penalization parameter beyond which cell collapses. Two cells: relative radius and overlapping distance for symmetric and unsymmetric cases are deduced, and differences in 3D and 2D cases are highlighted. Analytical solutions are related to contact angle, Laplace relation, and supported with a numerical vertex model.
Sprache
Englisch
Identifikatoren
ISSN: 2040-7939
eISSN: 2040-7947
DOI: 10.1002/cnm.3766
Titel-ID: cdi_proquest_miscellaneous_2847750834

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX