Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Electrochemical Self‐Healing Nanocrystal Electrodes for Ultrastable Potassium‐Ion Storage
Ist Teil von
Small (Weinheim an der Bergstrasse, Germany), 2023-06, Vol.19 (26), p.e2300046-n/a
Ort / Verlag
Germany: Wiley Subscription Services, Inc
Erscheinungsjahr
2023
Quelle
Wiley Blackwell Single Titles
Beschreibungen/Notizen
The unique properties of self‐healing materials hold great potential in battery systems, which can exhibit excellent deformability and return to its original shape after cycling. Herein, a Cu3BiS3 anode material with self‐healing mechanisms is proposed for use in ultrastable potassium‐ion battery (PIB) and potassium‐ion hybrid capacitor (PIHC). Different from the binder design, Cu3BiS3 anode can exhibit the dual advantages of phase and morphological reversibility, further remaining original property after potassiation/depotassiation and exhibiting ultrastable cycling performance. The reversible electrochemical reconstruction during the continuous charge/discharge processes is beneficial to maintain the structure and function of the material. Furthermore, the conversion reactions during the charge and discharge process produce two advantages: i) suppressing the shuttle effect due to the formation of the heterostructure interface between Cu (111) and Bi (012); ii) Cu can avoid the agglomeration of Bi nanoparticles (NPs), further improving the electrochemical performance and long‐cycle stability of the Cu3BiS3 electrode. As a result, the Cu3BiS3 electrode not only exhibits a long cycle life in half cells, but also 2000 cycles and 12000 cycles in PIB and PIHC full cells, respectively.
A Cu3BiS3 anode material with a self‐healing mechanism for potassium ion storage devices is proposed, which shows an electrochemical reconstruction of phase reversibility and morphological reversibility. The self‐healing process can suppress the shuttle effect and avoid the agglomeration of Bi nanoparticles.