Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Competitive learning with generalized winner-take-all activation
Ist Teil von
IEEE transactions on neural networks, 1992-03, Vol.3 (2), p.167-175
Ort / Verlag
New York, NY: IEEE
Erscheinungsjahr
1992
Quelle
IEEE Xplore
Beschreibungen/Notizen
Competitive learning paradigms are usually defined with winner-take-all (WTA) activation rules. The paper develops a mathematical model for competitive learning paradigms using a generalization of the WTA activation rule (g-WTA). The model is a partial differential equation (PDE) relating the time rate of change in the 'density' of weight vectors to the divergence of a vector field called the neural flux. Characteristic trajectories are used to study solutions of the PDE model over scalar weight spaces. These solutions show how the model can be used to design competitive learning algorithms which estimate the modes of unknown probability density functions.< >