Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 24 von 183057

Details

Autor(en) / Beteiligte
Titel
All‐Day Multicyclic Atmospheric Water Harvesting Enabled by Polyelectrolyte Hydrogel with Hybrid Desorption Mode
Ist Teil von
  • Advanced materials (Weinheim), 2023-09, Vol.35 (35), p.e2302038-n/a
Ort / Verlag
Germany: Wiley Subscription Services, Inc
Erscheinungsjahr
2023
Link zum Volltext
Quelle
Wiley Blackwell Single Titles
Beschreibungen/Notizen
  • Sorption‐based atmospheric water harvesting (AWH) is a promising approach for mitigating worldwide water scarcity. However, reliable water supply driven by sustainable energy regardless of diurnal variation and weather remains a long‐standing challenge. To address this issue, a polyelectrolyte hydrogel sorbent with an optimal hybrid‐desorption multicyclic‐operation strategy is proposed, achieving all‐day AWH and a significant increase in daily water production. The polyelectrolyte hydrogel possesses a large interior osmotic pressure of 659 atm, which refreshes sorption sites by continuously migrating the sorbed water within its interior, and thus enhancing sorption kinetics. The charged polymeric chains coordinate with hygroscopic salt ions, anchoring the salts and preventing agglomeration and leakage, thereby enhancing cyclic stability. The hybrid desorption mode, which couples solar energy and simulated waste heat, introduces a uniform and adjustable sorbent temperature for achieving all‐day ultrafast water release. With rapid sorption–desorption kinetics, an optimization model suggests that eight moisture capture–release cycles are capable of achieving high water yield of 2410 mLwater kgsorbent−1 day−1, up to 3.5 times that of single‐cyclic non‐hybrid modes. The polyelectrolyte hydrogel sorbent and the coupling with sustainable energy driven desorption mode pave the way for the next‐generation AWH systems, significantly bringing freshwater on a multi‐kilogram scale closer. A polyelectrolyte hydrogel sorbent with free and coordinated hygroscopic salt is described, which exhibits fast sorption due to the large interior osmotic pressure and prevention of salt aggregation and leakage through the strong salt–polymer electrostatic interactions. By using a multicyclic operation strategy and a hybrid desorption mode, the sorbent achieves high‐yield water production, outperforming single‐cyclic solar‐driven mode by three times.
Sprache
Englisch
Identifikatoren
ISSN: 0935-9648
eISSN: 1521-4095
DOI: 10.1002/adma.202302038
Titel-ID: cdi_proquest_miscellaneous_2815249094

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX