Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 19 von 235

Details

Autor(en) / Beteiligte
Titel
Using machine learning to predict antibody response to SARS-CoV-2 vaccination in solid organ transplant recipients: the multicentre ORCHESTRA cohort
Ist Teil von
  • Clinical microbiology and infection, 2023-08, Vol.29 (8), p.1084.e1-1084.e7
Ort / Verlag
England: Elsevier Ltd
Erscheinungsjahr
2023
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • The study aim was to assess predictors of negative antibody response (AbR) in solid organ transplant (SOT) recipients after the first booster of SARS-CoV-2 vaccination. Solid organ transplant recipients receiving SARS-CoV-2 vaccination were prospectively enrolled (March 2021–January 2022) at six hospitals in Italy and Spain. AbR was assessed at first dose (t0), second dose (t1), 3 ± 1 month (t2), and 1 month after third dose (t3). Negative AbR at t3 was defined as an anti-receptor binding domain titre <45 BAU/mL. Machine learning models were developed to predict the individual risk of negative (vs. positive) AbR using age, type of transplant, time between transplant and vaccination, immunosuppressive drugs, type of vaccine, and graft function as covariates, subsequently assessed using a validation cohort. Overall, 1615 SOT recipients (1072 [66.3%] males; mean age±standard deviation [SD], 57.85 ± 13.77) were enrolled, and 1211 received three vaccination doses. Negative AbR rate decreased from 93.66% (886/946) to 21.90% (202/923) from t0 to t3. Univariate analysis showed that older patients (mean age, 60.21 ± 11.51 vs. 58.11 ± 13.08), anti-metabolites (57.9% vs. 35.1%), steroids (52.9% vs. 38.5%), recent transplantation (<3 years) (17.8% vs. 2.3%), and kidney, heart, or lung compared with liver transplantation (25%, 31.8%, 30.4% vs. 5.5%) had a higher likelihood of negative AbR. Machine learning (ML) algorithms showing best prediction performance were logistic regression (precision-recall curve-PRAUC mean 0.37 [95%CI 0.36–0.39]) and k-Nearest Neighbours (PRAUC 0.36 [0.35–0.37]). Almost a quarter of SOT recipients showed negative AbR after first booster dosage. Unfortunately, clinical information cannot efficiently predict negative AbR even with ML algorithms.
Sprache
Englisch
Identifikatoren
ISSN: 1198-743X
eISSN: 1469-0691
DOI: 10.1016/j.cmi.2023.04.027
Titel-ID: cdi_proquest_miscellaneous_2811215619

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX