Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 15 von 33
Angewandte Chemie International Edition, 2023-06, Vol.62 (26), p.e202302241-n/a
International ed. in English, 2023
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Self‐Polarization Triggered Multiple Polar Units Toward Electrochemical Reduction of CO2 to Ethanol with High Selectivity
Ist Teil von
  • Angewandte Chemie International Edition, 2023-06, Vol.62 (26), p.e202302241-n/a
Auflage
International ed. in English
Ort / Verlag
Weinheim: Wiley Subscription Services, Inc
Erscheinungsjahr
2023
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • Electrochemical conversion of CO2 to highly valuable ethanol has been considered a intriguring strategy for carbon neutruality. However, the slow kinetics of coupling carbon‐carbon (C−C) bonds, especially the low selectivity ethanol than ethylene in neutral conditions, is a significant challenge. Herein, the asymmetrical refinement structure with enhanced charge polarization is built in the vertically oriented bimetallic organic frameworks (NiCu‐MOF) nanorod array with encapsulated Cu2O (Cu2O@MOF/CF), which can induce an intensive internal electric field to increase the C−C coupling for producing ethanol in neutral electrolyte. Particularly, when directly employed Cu2O@MOF/CF as the self‐supporting electrode, the ethanol faradaic efficiency (FEethanol) could reach maximum 44.3 % with an energy efficiency of 27 % at a low working‐potential of −0.615 V versus the reversible hydrogen electrode (vs. RHE) using CO2‐saturated 0.5 M KHCO3 as the electrolyte. Experimental and theoretical studies suggest that the polarization of atomically localized electric fields derived from the asymmetric electron distribution can tune the moderate adsorption of *CO to assist the C−C coupling and reduce the formation energy of H2CCHO*‐to‐*OCHCH3 for the generation of ethanol. Our research offers a reference for the design of highly active and selective electrocatalysts for reducing CO2 to multicarbon chemicals. The asymmetrical refinement structure with self‐polarizing unit possesses benchmark electrocatalytic activity towards CO2 to ethanol reduction on Cu2O@MOF/CF electrodes. Experimental and theoretical studies suggest that the polarization of atomically localized electric fields derived from the asymmetric electron distribution can tune the moderate adsorption of *CO to assist the C−C coupling and reduce the formation energy of CH3CHO* for the generation of ethanol.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX