Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Although the APOE ε4 allele is the strongest genetic risk factor for sporadic Alzheimer's disease (AD), the relationship between apolipoprotein (apoE) and AD pathophysiology is not yet fully understood. Relatively little is known about the apoE protein species, including post-translational modifications, that exist in the human periphery and CNS. To better understand these apoE species, we developed a LC-MS/MS assay that simultaneously quantifies both unmodified and O-glycosylated apoE peptides. The study cohort included 47 older individuals (age 75.6 ± 5.7 years [mean ± standard deviation]), including 23 individuals (49%) with cognitive impairment. Paired plasma and cerebrospinal fluid samples underwent analysis. We quantified O-glycosylation of two apoE protein residues – one in the hinge region and one in the C-terminal region – and found that glycosylation occupancy of the hinge region in the plasma was significantly correlated with plasma total apoE levels, APOE genotype and amyloid status as determined by CSF Aβ42/Aβ40. A model with plasma glycosylation occupancy, plasma total apoE concentration, and APOE genotype distinguished amyloid status with an AUROC of 0.89. These results suggest that plasma apoE glycosylation levels could be a marker of brain amyloidosis, and that apoE glycosylation may play a role in the pathophysiology of AD.
[Display omitted]
•Simultaneous quantification of unmodified and O-glycosylated apoE via LC-MS/MS.•Total plasma apoE varies by APOE genotype in an isoform, dose-dependent fashion.•CNS-derived apoE is more extensively O-glycosylated than peripherally derived apoE.•Hinge region glycosylation occupancy of plasma apoE is associated with amyloidosis.