Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 11 von 198742
Atmospheric environment (1994), 2003-12, Vol.37 (38), p.5307-5317
2003
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Particle-associated polycyclic aromatic hydrocarbons in urban air of Hong Kong
Ist Teil von
  • Atmospheric environment (1994), 2003-12, Vol.37 (38), p.5307-5317
Ort / Verlag
Oxford: Elsevier Ltd
Erscheinungsjahr
2003
Quelle
Access via ScienceDirect (Elsevier)
Beschreibungen/Notizen
  • PM 2.5 and PM 10 samples were collected at two sampling sites in Hong Kong in wintertime from November 2000 to March 2001 and in summertime from June to August 2001. The concentrations of 16 selected polycyclic aromatic hydrocarbons (PAHs) in aerosols were quantified. Spatial and seasonal variations of PAHs were characterized. The dominated PAHs in PM 2.5 and PM 10 included benzo[b]fluoranthene, pyrene, fluoranthene, indeno[1,2,3-cd]pyrene and chrysene, accounting for 50–82% of total PAHs. The sum of 16 PAHs in PM 2.5 at roadside ranged from 3 to 330 ng/m 3, and in PM 10 between 5 and 297 ng/m 3, whereas at a residential/industrial/commercial site, the total PAHs in PM 2.5 was from 0.5 to 122 ng/m 3, and 2–269 ng/m 3 in PM 10. Results indicated that most of the PAHs were in the PM 2.5 fraction. Spatial variations were predominantly due to the difference of source strength. For both PM 2.5 and PM 10, the total PAHs at PU site was higher than that at KT site. The average concentrations of individual PAHs in aerosols at PU site were also higher than that at KT site. Higher winter PAHs concentrations and lower summer concentrations were observed at the two sites. Higher winter PAHs concentrations were mainly caused by local emission sources superimposed by highly polluted air masses from Mainland China. The lower summer PAHs concentrations were likely due to easier dispersion of air pollutants, washout effects and to a lesser extent, photo-degradation and higher percentage in the air in vapor phase. Potential sources of PAHs in aerosols were identified using the diagnostic ratios between PAHs and PCA analysis. At PU site, vehicular emissions were the main contributors of particle-associated PAHs, and stationary combustion sources may also contribute to the particulate PAHs. On the contrary, at the KT site, PAHs in aerosols were predominantly from gasoline and diesel engines.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX