Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Despite numerous studies on broadband photodetectors, the problematic query that remains unaddressed is the limited photoresponsivity while broadening the spectral regime. Here, for the first time, a rational design of a hybrid 1D CdSe nanobelt/2D PbI2 flake heterojunction device is constructed, which substantially boosts the photocurrent while significantly attenuating the dark current, resulting in improved photodetector figures-of-merit. Thanks to the excellent quality of the nanobelt/flake and built-in electric field at the CdSe/PbI2 interface heterojunction, photogenerated carriers are promptly segregated and more photoexcitons are accumulated by the respective electrodes, enabling a high responsivity of ∼106 A/W, making this one of the highest values among similar reported hybrid heterojunction photodetectors, together with a large linear dynamic range, superior sensitivity, excellent detectivity and external quantum efficiency, an ultrafast response, and a broadband spectral response range. The similar 1D/2D hybrid heterojunction device architecture assembled on the flexible polyimide tape substrate exhibits excellent folding endurance and mechanical, flexural, and long-term environmental stability. The present device architecture and robust operational stability in an ambient environment reveals that the combination of the present 1D/2D hybrid heterojunction has incredible potential for future flexible photoelectronic devices.