Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 19 von 325
Angewandte Chemie International Edition, 2023-05, Vol.62 (19), p.e202300129-n/a
International ed. in English, 2023
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Suppressive Strong Metal‐Support Interactions on Ruthenium/TiO2 Promote Light‐Driven Photothermal CO2 Reduction with Methane
Ist Teil von
  • Angewandte Chemie International Edition, 2023-05, Vol.62 (19), p.e202300129-n/a
Auflage
International ed. in English
Ort / Verlag
Weinheim: Wiley Subscription Services, Inc
Erscheinungsjahr
2023
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • Strong metal‐support interactions (SMSI) have gained great attention in the heterogeneous catalysis field, but its negative role in regulating light‐induced electron transfer is rarely explored. Herein, we describe how SMSI significantly restrains the activity of Ru/TiO2 in light‐driven CO2 reduction by CH4 due to the photo‐induced transfer of electrons from TiO2 to Ru. In contrast, on suppression of SMSI Ru/TiO2−H2 achieves a 46‐fold CO2 conversion rate compared to Ru/TiO2. For Ru/TiO2−H2, a considerable number of photo‐excited hot electrons from Ru nanoparticles (NPs) migrate to oxygen vacancies (OVs) and facilitate CO2 activation under illumination, simultaneously rendering Ruδ+ electron deficient and better able to accelerate CH4 decomposition. Consequently, photothermal catalysis over Ru/TiO2−H2 lowers the activation energy and overcomes the limitations of a purely thermal system. This work offers a novel strategy for designing efficient photothermal catalysts by regulating two‐phase interactions. Suppressive strong metal–support interactions (SMSI) enable hot electrons excited on Ru to transfer to a TiO2−H2 support, thereby reducing the electron density on Ru and accelerating light‐driven CO2 reduction with methane. The optimized Ru/TiO2−H2 composite exhibits an enhanced CO2 conversion rate of 400 mmol gcat−1 h−1.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX