Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...

Details

Autor(en) / Beteiligte
Titel
The utility of machine learning for predicting donor discard in abdominal transplantation
Ist Teil von
  • Clinical transplantation, 2023-05, Vol.37 (5), p.e14951-n/a
Ort / Verlag
Denmark
Erscheinungsjahr
2023
Quelle
Wiley Online Library Journals Frontfile Complete
Beschreibungen/Notizen
  • Background Increasing access and better allocation of organs in the field of transplantation is a critical problem in clinical care. Limitations exist in accurately predicting allograft discard. Potential exists for machine learning to provide a balanced assessment of the potential for an organ to be used in a transplantation procedure. Methods We accessed and utilized all available deceased donor United Network for Organ Sharing data from 1987 to 2020. With these data, we evaluated the performance of multiple machine learning methods for predicting organ use. The machine learning methods trialed included XGBoost, random forest, Naïve Bayes (NB), logistic regression, and fully connected feedforward neural network classifier methods. The top two methods, XGBoost and random forest, were fully developed using 10‐fold cross‐validation and Bayesian optimization of hyperparameters. Results The top performing model at predicting liver organ use was an XGBoost model which achieved an AUC‐ROC of .925, an AUC‐PR of .868, and an F1 statistic of .756. The top performing model for predicting kidney organ use classification was an XGBoost model which achieved an AUC‐ROC of .952, and AUC‐PR of .883, and an F1 statistic of .786. Conclusions The XGBoost method demonstrated a significant improvement in predicting donor allograft discard for both kidney and livers in solid organ transplantation procedures. Machine learning methods are well suited to be incorporated into the clinical workflow; they can provide robust quantitative predictions and meaningful data insights for clinician consideration and transplantation decision‐making.
Sprache
Englisch
Identifikatoren
ISSN: 0902-0063, 1399-0012
eISSN: 1399-0012
DOI: 10.1111/ctr.14951
Titel-ID: cdi_proquest_miscellaneous_2781212434

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX