Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
[Display omitted]
•A novel MV-mediated CEF system is proposed for efficient butanol production.•Methyl viologen supplement inhibits H2 formation and enhances butanol production.•Exogenous butyric acid enhances butanol production in the MV-mediated CEF system.•Butanol selectivity from co-substrates of glucose and butyric acid achieves 90.44%.
Butanol production by solventogenic Clostridia shows great potential to combat the energy crisis, but is still challenged by low butanol selectivity and high downstream cost. In this study, a novel cathodic electro-fermentation (CEF) system mediated by methyl viologen (MV) was proposed and sequentially optimized to obtain highly selective butanol production. Under the optimal conditions (−0.60 V cathode potential, 0.50 mM MV, 30 g/L glucose), 7.17 ± 0.55 g/L butanol production were achieved with the yield of 0.32 ± 0.02 g/g. With the supplement of 4 g/L butyric acid as co-substrate, butanol production further improved to 13.14 ± 1.14 g/L with butanol yield and selectivity as high as 0.43 ± 0.01 g/g and 90.44 ± 1.66%, respectively. The polarized electrode enabled the unbalanced fermentation towards butanol formation and MV further inhibited hydrogen production, both of which contributed to the high-level butanol production and selectivity. The MV-mediated CEF system is a promising approach for cost-effective bio-butanol production.