Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...

Details

Autor(en) / Beteiligte
Titel
Strong‐Proton‐Adsorption Co‐Based Electrocatalysts Achieve Active and Stable Neutral Seawater Splitting
Ist Teil von
  • Advanced materials (Weinheim), 2023-04, Vol.35 (16), p.e2210057-n/a
Ort / Verlag
Germany: Wiley Subscription Services, Inc
Erscheinungsjahr
2023
Quelle
Wiley-Blackwell Journals
Beschreibungen/Notizen
  • Direct electrolysis of pH‐neutral seawater to generate hydrogen is an attractive approach for storing renewable energy. However, due to the anodic competition between the chlorine evolution and the oxygen evolution reaction (OER), direct seawater splitting suffers from a low current density and limited operating stability. Exploration of catalysts enabling an OER overpotential below the hypochlorite formation overpotential (≈490 mV) is critical to suppress the chloride evolution and facilitate seawater splitting. Here, a proton‐adsorption‐promoting strategy to increase the OER rate is reported, resulting in a promoted and more stable neutral seawater splitting. The best catalysts herein are strong‐proton‐adsorption (SPA) materials such as palladium‐doped cobalt oxide (Co3–xPdxO4) catalysts. These achieve an OER overpotential of 370 mV at 10 mA cm−2 in pH‐neutral simulated seawater, outperforming Co3O4 by a margin of 70 mV. Co3–xPdxO4 catalysts provide stable catalytic performance for 450 h at 200 mA cm−2 and 20 h at 1 A cm−2 in neutral seawater. Experimental studies and theoretical calculations suggest that the incorporation of SPA cations accelerates the rate‐determining water dissociation step in neutral OER pathway, and control studies rule out the provision of additional OER sites as a main factor herein. Direct electrolysis of pH‐neutral seawater is not only a promising approach to produce clean hydrogen energy, but also of great significance to seawater desalination. Now, both the simulations and experimental characterizations illustrate that incorporating the strong‐proton‐adsorption cations into Co3O4 can increase the rate‐determining water dissociation step and achieve industrially required current density of >200 mA cm−2 in natural seawater.
Sprache
Englisch
Identifikatoren
ISSN: 0935-9648
eISSN: 1521-4095
DOI: 10.1002/adma.202210057
Titel-ID: cdi_proquest_miscellaneous_2771332848

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX