Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 11 von 18

Details

Autor(en) / Beteiligte
Titel
Effects of Magnesium on nitrate uptake and sorbitol synthesis and translocation in apple seedlings
Ist Teil von
  • Plant physiology and biochemistry, 2023-03, Vol.196, p.139-151
Ort / Verlag
France: Elsevier Masson SAS
Erscheinungsjahr
2023
Quelle
MEDLINE
Beschreibungen/Notizen
  • Both magnesium (Mg) and nitrogen (N) play many important roles in plant physiological and biochemical processes. Plants usually exhibit low nitrogen utilization efficiency (NUE) under Mg deficiency conditions, but the mechanisms by which Mg regulates NUE are not well understood. Herein, we investigated biomass, nutrient uptake, sorbitol and sucrose transport, and relative gene expression in apple seedlings under various concentrations of Mg and N treatments in hydroponic cultures. We first observed that low Mg supply significantly limited plant growth and N, Mg concentrations. Increasing the supply of N, but not Mg, partially alleviated the inhibition of plant growth under low Mg stress, which indicated that Mg deficiency had a negative impact on plant growth because it inhibits N absorption. Moreover, we found that the expression of nitrate transporter genes MdNRT2.1 and MdNRT2.4 was significantly downregulated by low Mg stress, and sufficient Mg significantly promoted sucrose and sorbitol synthesis and transport from leaves to roots by regulating relevant enzyme activity and genes expression. Further experiments showed that exogenous sorbitol could rapidly restore MdNRT2.1/2.4 expression and nitrate uptake under low Mg availability without increasing internal Mg level, suggesting that Mg may regulate MdNRT2.1/2.4 expression by regulating more sorbitol transport to roots, the effect of Mg on N was indirect, sorbitol played a key role during this process. Taken together, Mg promoted sorbitol synthesis and transport into roots, thus upregulating the expression of MdNRT2.1/2.4 and increasing the absorption of nitrate. •Mg-deficiency inhibited nitrate uptake in apple plants.•Mg promoted sorbitol synthesis in leaves and transportation form leaves to roots.•Exogenous sorbitol upregulated MdNRT2.1/2.4 expression in roots under Mg-deficiency condition.
Sprache
Englisch
Identifikatoren
ISSN: 0981-9428
eISSN: 1873-2690
DOI: 10.1016/j.plaphy.2023.01.033
Titel-ID: cdi_proquest_miscellaneous_2770477789

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX