Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 17 von 55959
Angewandte Chemie International Edition, 2023-01, Vol.62 (5), p.e202214809-n/a
International ed. in English, 2023
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
A Petrochemical‐Free Route to Superelastic Hierarchical Cellulose Aerogel
Ist Teil von
  • Angewandte Chemie International Edition, 2023-01, Vol.62 (5), p.e202214809-n/a
Auflage
International ed. in English
Ort / Verlag
Germany: Wiley Subscription Services, Inc
Erscheinungsjahr
2023
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • Cellulose aerogels are plagued by intermolecular hydrogen bond‐induced structural plasticity, otherwise rely on chemicals modification to extend service life. Here, we demonstrate a petrochemical‐free strategy to fabricate superelastic cellulose aerogels by designing hierarchical structures at multi scales. Oriented channels consolidate the whole architecture. Porous walls of dehydrated cellulose derived from thermal etching not only exhibit decreased rigidity and stickiness, but also guide the microscopic deformation and mitigate localized large strain, preventing structural collapse. The aerogels show exceptional stability, including temperature‐invariant elasticity, fatigue resistance (∼5 % plastic deformation after 105 cycles), high angular recovery speed (1475.4° s−1), outperforming most cellulose‐based aerogels. This benign strategy retains the biosafety of biomass and provides an alternative filter material for health‐related applications, such as face masks and air purification. A new type of cellulose aerogels with anisotropic and hierarchical porous architecture are developed via a petrochemical‐free method. The aerogels display temperature‐invariant elasticity (∼5 % plastic deformation after 105 compressive cycles at 50 % strain), large‐strain recoverability (folding and twisting), angular recovery speed high up to 1475.4° s−1, and exceptional fatigue resistance.
Sprache
Englisch
Identifikatoren
ISSN: 1433-7851
eISSN: 1521-3773
DOI: 10.1002/anie.202214809
Titel-ID: cdi_proquest_miscellaneous_2742657881

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX