Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 4 von 665

Details

Autor(en) / Beteiligte
Titel
Two‐Dimensional Nanofluidic Membranes with Intercalated In‐Plane Shortcuts for High‐Performance Blue Energy Harvesting
Ist Teil von
  • Small (Weinheim an der Bergstrasse, Germany), 2023-01, Vol.19 (4), p.e2205003-n/a
Ort / Verlag
Germany: Wiley Subscription Services, Inc
Erscheinungsjahr
2023
Link zum Volltext
Quelle
Wiley Online Library
Beschreibungen/Notizen
  • Two‐dimensional nanofluidic membranes offer great opportunities for developing efficient and robust devices for ionic/water‐nexus energy harvesting. However, low counterion concentration and long pathway through limited ionic flux restrict their output performance. Herein, it is demonstrated that rapid diffusion kinetics can be realized in two‐dimensional nanofluidic membranes by introducing in‐plane holes across nanosheets, which not only increase counterion concentration but also shorten pathway length through the membranes. Thus, the holey membranes exhibited an enhanced performance relative to the pristine ones in terms of osmotic energy conversion. In particular, a biomimetic multilayered membrane sequentially assembled from pristine and holey sections offers an optimized combination of selectivity and permeability, therefore generating a power density up to 6.78 W m−2 by mixing seawater and river water, superior to the majority of the state‐of‐the‐art lamellar nanofluidic membranes. This work highlights the importance of channel morphologies and presents a general strategy for effectively improving ion transport through lamellar membranes for high‐performance nanofluidic devices. A biomimetic multilayered membrane sequentially assembled from pristine and holey sections can offer an optimized combination of ion selectivity and permeability. It can generate an enhanced performance in terms of osmotic energy conversion, which is superior to the majority of the state‐of‐the‐art lamellar nanofluidic membranes.
Sprache
Englisch
Identifikatoren
ISSN: 1613-6810
eISSN: 1613-6829
DOI: 10.1002/smll.202205003
Titel-ID: cdi_proquest_miscellaneous_2740513568

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX