UNIVERSI
TÄ
TS-
BIBLIOTHEK
P
ADERBORN
Anmelden
Menü
Menü
Start
Hilfe
Blog
Weitere Dienste
Neuerwerbungslisten
Fachsystematik Bücher
Erwerbungsvorschlag
Bestellung aus dem Magazin
Fernleihe
Einstellungen
Sprache
Deutsch
Deutsch
Englisch
Farbschema
Hell
Dunkel
Automatisch
Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist
gegebenenfalls
nur via VPN oder Shibboleth (DFN-AAI) möglich.
mehr Informationen...
Universitätsbibliothek
Katalog
Suche
Details
Zur Ergebnisliste
Ergebnis 11 von 119
Datensatz exportieren als...
BibTeX
Deep Learning for Estimating Lung Capacity on Chest Radiographs Predicts Survival in Idiopathic Pulmonary Fibrosis
Radiology, 2023-03, Vol.306 (3), p.e220292-e220292
Kim, Hyungjin
Jin, Kwang Nam
Yoo, Seung-Jin
Lee, Chang Hoon
Lee, Sang-Min
Hong, Hyunsook
Witanto, Joseph Nathanael
Yoon, Soon Ho
2023
Volltextzugriff (PDF)
Details
Autor(en) / Beteiligte
Kim, Hyungjin
Jin, Kwang Nam
Yoo, Seung-Jin
Lee, Chang Hoon
Lee, Sang-Min
Hong, Hyunsook
Witanto, Joseph Nathanael
Yoon, Soon Ho
Titel
Deep Learning for Estimating Lung Capacity on Chest Radiographs Predicts Survival in Idiopathic Pulmonary Fibrosis
Ist Teil von
Radiology, 2023-03, Vol.306 (3), p.e220292-e220292
Ort / Verlag
United States
Erscheinungsjahr
2023
Quelle
Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
Beschreibungen/Notizen
Background Total lung capacity (TLC) has been estimated with use of chest radiographs based on time-consuming methods, such as planimetric techniques and manual measurements. Purpose To develop a deep learning-based, multidimensional model capable of estimating TLC from chest radiographs and demographic variables and validate its technical performance and clinical utility with use of multicenter retrospective data sets. Materials and Methods A deep learning model was pretrained with use of 50 000 consecutive chest CT scans performed between January 2015 and June 2017. The model was fine-tuned on 3523 pairs of posteroanterior chest radiographs and plethysmographic TLC measurements from consecutive patients who underwent pulmonary function testing on the same day. The model was tested with multicenter retrospective data sets from two tertiary care centers and one community hospital, including an external test set 1 ( = 207) and external test set 2 ( = 216) for technical performance and patients with idiopathic pulmonary fibrosis ( = 217) for clinical utility. Technical performance was evaluated with use of various agreement measures, and clinical utility was assessed in terms of the prognostic value for overall survival with use of multivariable Cox regression. Results The mean absolute difference and within-subject SD between observed and estimated TLC were 0.69 L and 0.73 L, respectively, in the external test set 1 (161 men; median age, 70 years [IQR: 61-76 years]) and 0.52 L and 0.53 L in the external test set 2 (113 men; median age, 63 years [IQR: 51-70 years]). In patients with idiopathic pulmonary fibrosis (145 men; median age, 67 years [IQR: 61-73 years]), greater estimated TLC percentage was associated with lower mortality risk (adjusted hazard ratio, 0.97 per percent; 95% CI: 0.95, 0.98; < .001). Conclusion A fully automatic, deep learning-based model estimated total lung capacity from chest radiographs, and the model predicted survival in idiopathic pulmonary fibrosis. © RSNA, 2022 See also the editorial by Sorkness in this issue.
Sprache
Englisch
Identifikatoren
ISSN: 0033-8419
eISSN: 1527-1315
DOI: 10.1148/radiol.220292
Titel-ID: cdi_proquest_miscellaneous_2729029742
Format
–
Schlagworte
Aged
,
Deep Learning
,
Humans
,
Idiopathic Pulmonary Fibrosis - diagnostic imaging
,
Lung - diagnostic imaging
,
Lung Volume Measurements
,
Male
,
Middle Aged
,
Radiography
,
Retrospective Studies
Weiterführende Literatur
Empfehlungen zum selben Thema automatisch vorgeschlagen von
bX