Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 4 von 4

Details

Autor(en) / Beteiligte
Titel
An accelerated triangulation method for computing the skeletons of free-form solid models
Ist Teil von
  • Computer aided design, 1997, Vol.29 (1), p.5-19
Ort / Verlag
Oxford: Elsevier Ltd
Erscheinungsjahr
1997
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • Shape skeletons are powerful geometric abstractions that provide useful intermediate representations for a number of geometric operations on solid models including feature recognition, shape decomposition, finite element mesh generation, and shape design. As a result there has been significant interest in the development of effective methods for skeleton generation of general free-form solids. In this paper we describe a method that combines Delaunay triangulation with local numerical optimization schemes for the generation of accurate skeletons of 3D implicit solid models. The proposed method accelerates the slow convergence of Voronoi diagrams to the skeleton, which, without optimization, would require impraelically large sample point sets and resulting meshes to attain acceptable accuracy. The Delaunay triangulation forms the basis for generating the topological structure of the skeleton. The optimization step of the process generates the geometry of the skeleton patches by moving the vertices of Delaunay tetrahedra and relocating their centres to form maximally inscribed spheres. The computational advantage of the optimization scheme is that it involves the solution of one small optimization problem per tetrahedron and its complexity is therefore only linear ( O( n)) in the number of points used for the skeleton approximation. We demonstrate the effectiveness of the method on a number of representative solid models.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX