Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 7 von 7742122
Trends in plant science, 2023-02, Vol.28 (2), p.199-210
2023
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Machine learning bridges omics sciences and plant breeding
Ist Teil von
  • Trends in plant science, 2023-02, Vol.28 (2), p.199-210
Ort / Verlag
England: Elsevier Ltd
Erscheinungsjahr
2023
Quelle
MEDLINE
Beschreibungen/Notizen
  • Some of the biological knowledge obtained from fundamental research will be implemented in applied plant breeding. To bridge basic research and breeding practice, machine learning (ML) holds great promise to translate biological knowledge and omics data into precision-designed plant breeding. Here, we review ML for multi-omics analysis in plants, including data dimensionality reduction, inference of gene-regulation networks, and gene discovery and prioritization. These applications will facilitate understanding trait regulation mechanisms and identifying target genes potentially applicable to knowledge-driven molecular design breeding. We also highlight applications of deep learning in plant phenomics and ML in genomic selection-assisted breeding, such as various ML algorithms that model the correlations among genotypes (genes), phenotypes (traits), and environments, to ultimately achieve data-driven genomic design breeding. To bridge the gaps between basic research and breeding practice in plants, machine learning (ML) holds great promise to integrate biological knowledge and omics data, to ultimately achieve precision-designed plant breeding.Recent applications of ML in plant research and breeding include data dimensionality reduction, inference of gene-regulation networks, gene discovery and prioritization, plant phenomics analysis, and genomic prediction of plant phenotypes.High-dimensional biology denotes the integration and analysis of macroscale to microscale biological data, elevating the chance of identifying trait-causative genes utilizable for knowledge-driven molecular design breeding.In the era of big data, ML is capable of modeling the complex relations of genotypic, phenotypic, and environmental data collected from breeding practice, to achieve data-driven genomic design breeding.
Sprache
Englisch
Identifikatoren
ISSN: 1360-1385
eISSN: 1878-4372
DOI: 10.1016/j.tplants.2022.08.018
Titel-ID: cdi_proquest_miscellaneous_2717696786

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX