Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 4 von 12

Details

Autor(en) / Beteiligte
Titel
Ligand functionalization of titanium nanopattern enables the analysis of cell–ligand interactions by super-resolution microscopy
Ist Teil von
  • Nature protocols, 2022-10, Vol.17 (10), p.2275-2306
Ort / Verlag
London: Nature Publishing Group
Erscheinungsjahr
2022
Beschreibungen/Notizen
  • The spatiotemporal aspects of early signaling events during interactions between cells and their environment dictate multiple downstream outcomes. While advances in nanopatterning techniques have allowed the isolation of these signaling events, a major limitation of conventional nanopatterning methods is its dependence on gold (Au) or related materials that plasmonically quench fluorescence and, thus, are incompatible with super-resolution fluorescence microscopy. Here we describe a novel method that integrates nanopatterning with single-molecule resolution fluorescence imaging, thus enabling mechanistic dissection of molecular-scale signaling events in conjunction with nanoscale geometry manipulation. Our method exploits nanofabricated titanium (Ti) whose oxide (TiO2) is a dielectric material with no plasmonic effects. We describe the surface chemistry for decorating specific ligands such as cyclo-RGD (arginine, glycine and aspartate: a ligand for fibronectin-binding integrins) on TiO2 nanoline and nanodot substrates, and demonstrate the ability to perform dual-color super-resolution imaging on these patterns. Ti nanofabrication is similar to other metallic materials like Au, while the functionalization of TiO2 is relatively fast, safe, economical, easy to set up with commonly available reagents, and robust against environmental parameters such as humidity. Fabrication of nanopatterns takes ~2–3 d, preparation for functionalization ~1.5–2 d, and functionalization 3 h, after which cell culture and imaging experiments can be performed. We suggest that this method may facilitate the interrogation of nanoscale geometry and force at single-molecule resolution, and should find ready applications in early detection and interpretation of physiochemical signaling events at the cell membrane in the fields of cell biology, immunology, regenerative medicine, and related fields.Receptor-mediated signaling occurs at nanoscale. Understanding this requires nanopatterning and imaging techniques compatible at this scale. Rapid functionalization of Ti nanopatterns allows nanoscale visualization of early steps in cell signaling.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX