Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 4 von 87

Details

Autor(en) / Beteiligte
Titel
Enhancing Electrochemiluminescence Efficiency through Introducing Atomically Dispersed Ruthenium in Nickel-Based Metal–Organic Frameworks
Ist Teil von
  • Analytical chemistry (Washington), 2022-07, Vol.94 (29), p.10557-10566
Ort / Verlag
Washington: American Chemical Society
Erscheinungsjahr
2022
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • The successful application of electrochemiluminescence (ECL) in various fields required continuous exploration of novel ECL signal emitters. In this work, we have proposed a pristine ECL luminophor named NiRu MOFs, which owned extremely high and stable ECL transmission efficiency and was synthesized via a straightforward two-step hydrothermal pathway. The foundation framework of pure Ni-MOFs with the initial structure was layered-pillared constructed by the coordinated octahedrally divalent between nickel and terephthalic acid (BDC). The terephthalates were coordinated and pillared directly to the nickel hydroxide layers and the three-dimensional framework was formed, which had a weak ECL response strength. Then, the ruthenium pyridine complex was recombined with pure Ni-MOFs to produce NiRu MOFs and part of the introduced ruthenium was atomically dispersed in the layered-pillared structure through an ion-exchange method, which led to the ECL luminous efficiency being significantly boosted more than pure Ni-MOFs. In order to verify the superiority of this newly synthesized illuminant, an ECL immunoassay model has been designed, and the results demonstrated that it had extremely strong and steady signal output in practical application. This study realized an efficient platform in ECL immunoassay application with the limit of detection of 0.32 pg mL–1 for neuron-specific enolase (NSE). Therefore, the approach which combined the pristine pure Ni-MOFs and the star-illuminant ruthenium pyridine complex would provide a convenient and meaningful solution for exploring the next-generation ECL emitters.
Sprache
Englisch
Identifikatoren
ISSN: 0003-2700
eISSN: 1520-6882
DOI: 10.1021/acs.analchem.2c02334
Titel-ID: cdi_proquest_miscellaneous_2691049323

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX