Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Mercury (Hg) stable isotope analysis has become a powerful tool to identify Hg sources and to understand its biogeochemical processes. However, it is challenging to link the observed Hg isotope fractionation to its global cycling. Here, we integrate source Hg isotope signatures and process-based Hg isotope fractionation into a three-dimensional isotope model based on the GEOS-Chem model platform. Our simulated isotope compositions of total gaseous Hg (TGM) are broadly comparable with available observations across global regions. The isotope compositions of global TGM, potentially distinguishable over different regions, are caused by the atmospheric mixture of anthropogenic, natural, and re-emitted Hg sources, superimposed with competing processes, notably gaseous Hg(0) dry deposition and Hg redox transformations. We find that Hg(0) dry deposition has a great impact on the isotope compositions of global TGM and drives the seasonal variation of δ202Hg in forest-covered regions. The atmospheric photo-reduction of Hg(Ⅱ) dominates over Hg(0) oxidation in driving the global Δ199Hg (and Δ201Hg) distribution patterns in TGM. We suggest that the magnitude of isotope fractionation associated with atmospheric aqueous-phase Hg(Ⅱ) reduction is likely close to aquatic Hg(Ⅱ) reduction. Our model provides a vital tool for coupling the global atmospheric Hg cycle and its isotope fractionation at various scales and advances our understanding of atmospheric Hg transfer and transformation mechanisms.
[Display omitted]
•A 3-D model is developed for the modeling of atmospheric Hg isotope fractionation.•Global observations are reproduced based on current Hg isotope paradigms.•Dry deposition of Hg(0) has significant impact on δ202Hg in global TGM.•Photo-reduction of atmospheric aqueous-phase Hg(Ⅱ) dominates the Δ199Hg in global TGM.