Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 10 von 3913
IEEE transactions on image processing, 2022-01, Vol.31, p.3793-3808
2022
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Self-Supervised Nonlinear Transform-Based Tensor Nuclear Norm for Multi-Dimensional Image Recovery
Ist Teil von
  • IEEE transactions on image processing, 2022-01, Vol.31, p.3793-3808
Ort / Verlag
United States: IEEE
Erscheinungsjahr
2022
Quelle
IEEE/IET Electronic Library (IEL)
Beschreibungen/Notizen
  • Recently, transform-based tensor nuclear norm (TNN) minimization methods have received increasing attention for recovering third-order tensors in multi-dimensional imaging problems. The main idea of these methods is to perform the linear transform along the third mode of third-order tensors and then minimize the nuclear norm of frontal slices of the transformed tensor. The main aim of this paper is to propose a nonlinear multilayer neural network to learn a nonlinear transform by solely using the observed tensor in a self-supervised manner. The proposed network makes use of the low-rank representation of the transformed tensor and data-fitting between the observed tensor and the reconstructed tensor to learn the nonlinear transform. Extensive experimental results on different data and different tasks including tensor completion, background subtraction, robust tensor completion, and snapshot compressive imaging demonstrate the superior performance of the proposed method over state-of-the-art methods.
Sprache
Englisch
Identifikatoren
ISSN: 1057-7149
eISSN: 1941-0042
DOI: 10.1109/TIP.2022.3176220
Titel-ID: cdi_proquest_miscellaneous_2668910703

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX