Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 6 von 5350
Soft matter, 2022-05, Vol.18 (17), p.3335-3341
2022
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Self-diffusion of spherocylindrical particles flowing under non-uniform shear rate
Ist Teil von
  • Soft matter, 2022-05, Vol.18 (17), p.3335-3341
Ort / Verlag
England: Royal Society of Chemistry
Erscheinungsjahr
2022
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • This work is devoted to study numerically the self-diffusion of spherocylindrical particles flowing down an inclined plane, using the discrete element method (DEM). This system is challenging due to particles being non-spherical and because they are subjected to a non-uniform shear rate. We performed simulations for several aspect ratios and inclination angles, tracking individual particle trajectories. Using the simulation data, we computed the diffusion coefficients D , and a coarse-graining methodology allowed accessing the shear rate spatial profiles &z.ggrda; ( z ). This data enabled us to identify the spatial regions where the diffusivity strongly correlates with the local shear rate. Introducing an effective particle size d , we proposed a well-rationalized scaling law between D and &z.ggrda; . Our findings also identified specific locations where the diffusivity does not correlate with the shear rate. This observation corresponds to zones where &z.ggrda; has non-linear spatial variation, and the velocity probability density distributions exhibit asymmetric shapes. This work is devoted to study numerically the self-diffusion of spherocylindrical particles flowing down an inclined plane, using the discrete element method (DEM).
Sprache
Englisch
Identifikatoren
ISSN: 1744-683X
eISSN: 1744-6848
DOI: 10.1039/d1sm01436f
Titel-ID: cdi_proquest_miscellaneous_2651692201

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX