Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Fibrous Nanoreactors from Microfluidic Blow Spinning for Mass Production of Highly Stable Ligand‐Free Perovskite Quantum Dots
Ist Teil von
Angewandte Chemie International Edition, 2022-07, Vol.61 (27), p.e202204371-n/a
Auflage
International ed. in English
Ort / Verlag
Germany: Wiley Subscription Services, Inc
Erscheinungsjahr
2022
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
Nano‐/micro‐reactors have emerged as a powerful platform for chemical synthesis. Here, we develop fiber‐spinning chemistry (FSC) based on a microfluidic blow spinning (MBS) technique, allowing the availability of nanoreactors for chemical synthesis with scale‐up capacities. Proof‐of‐concept experiments focus on the utilization of MBS‐derived fibrous nanoreactors for large‐scale production of ligand‐free perovskite quantum dots (PQDs) in one step. Typically, methylammonium lead halide (MAPbX3, X=Cl, Br, and I) PQDs in situ synthesized at large scale inside polyacrylonitrile (PAN) nanofiber films (size 120 cm ×30 cm per hour), exhibit high photoluminescence (PL) quantum yield (QY) of 71 %, tunable emissive peaks (448–600 nm), and superb PL stability. The PQDs/polymer nanofiber films are potentially useful for CO2 conversion, wide‐color‐gamut displays and light‐emitting diode (LED) devices. These findings may guide the development of nano‐/micro‐reactor technology for scale‐up production of nanomaterials with various potential applications.
Fiber‐spinning chemistry based on a microfluidic blow spinning (MBS) technique is developed to construct fibrous nanoreactors allowing mass production of ligand‐free perovskite quantum dots (PQDs). The resultant PQDs/polymer nanofiber films possess high fluorescence stability under extreme conditions like light irradiation, heating and water dipping, which show potential applications in photocatalytic CO2 reduction and optoelectronic devices.