Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Production of normal gametes is necessary for flowering plant reproduction, which involves the transition from vegetative to reproductive stage and floral organ development. Such transitions and floral development are modulated by various environmental and endogenous stimuli and controlled by sophisticated regulatory networks. FLOWERING LOCUS T (FT) and LEAFY (LFY) are two key genes that integrate signals from multiple genetic pathways in Arabidopsis. However, the comprehensive functions and relationship between these two genes in trees are poorly understood. In this study, we found that JcFT played a vital role in regulating the flowering transition in the perennial woody species Jatropha curcas. JcLFY also involved in regulating this transition and controlled floral organ development. The non–flowering phenotype of JcFT-RNAi was rescued successfully by overexpression of JcLFY, while the abnormal flowers produced by JcLFY silencing were not recovered by JcFT overexpression via hybridization. These results indicate that JcFT, in which a mutation leads to a nonflowering phenotype, is the central gene of the floral meristem transition and that JcLFY, in which a mutation leads to striking changes in flowering and often sterility, is the central floral and inflorescence development gene. Moreover, our hybridization results suggest that JcLFY acts downstream of JcFT in Jatropha.
JcLFY-silenced plants showed abnormal flowers, this picture exhibited the extremely overgrowing of floral organ in JcLFY-silenced plants. [Display omitted]
•The long generation time of woody species is the key limiting factor for genetic improvement and breeding.•The non-flowering phenotype of JcFT-RNAi could be rescued by JcLFY-overexpression, while the abnormal flowers produced by JcLFY silencing could not rescued by JcFT-overexpression.•The hybridization results suggest that JcLFY acts downstream of JcFT in Jatropha. These two genes may help to guide molecular breeding of perennial plants.