Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 2 von 2

Details

Autor(en) / Beteiligte
Titel
External validation of the European Society of Thoracic Surgeons morbidity and mortality risk models
Ist Teil von
  • European journal of cardio-thoracic surgery, 2022-08, Vol.62 (3)
Ort / Verlag
Germany: Oxford University Press
Erscheinungsjahr
2022
Quelle
Oxford Journals 2020 Medicine
Beschreibungen/Notizen
  • Abstract OBJECTIVES There is a wide variety of predictive models of postoperative risk, although some of them are specific to thoracic surgery, none of them is widely used. The European Society for Thoracic Surgery has recently updated its models of cardiopulmonary morbidity (Eurolung 1) and 30-day mortality (Eurolung 2) after anatomic lung resection. The aim of our work is to carry out the external validation of both models in a multicentre national database. METHODS External validation of Eurolung 1 and Eurolung 2 was evaluated through calibration (calibration plot, Brier score and Hosmer–Lemeshow test) and discrimination [area under receiver operating characteristic curves (AUC ROC)], on a national multicentre database of 2858 patients undergoing anatomic lung resection between 2016 and 2018. RESULTS For Eurolung 1, calibration plot showed suboptimal overlapping (slope = 0.921) and a Hosmer–Lemeshow test and Brier score of P = 0.353 and 0.104, respectively. In terms of discrimination, AUC ROC for Eurolung 1 was 0.653 (95% confidence interval, 0.623–0.684). In contrast, Eurolung 2 showed a good calibration (slope = 1.038) and a Hosmer–Lemeshow test and Brier score of P = 0.234 and 0.020, respectively. AUC ROC for Eurolung 2 was 0.760 (95% confidence interval, 0.701–0.819). CONCLUSIONS Thirty-day mortality score (Eurolung 2) seems to be transportable to other anatomic lung-resected patients. On the other hand, postoperative cardiopulmonary morbidity score (Eurolung 1) seems not to have sufficient generalizability for new patients. Surgical risk prediction models are an invaluable tool for assessing perioperative results, counselling patients and benchmarking [1–4].
Sprache
Englisch
Identifikatoren
ISSN: 1010-7940
eISSN: 1873-734X
DOI: 10.1093/ejcts/ezac170
Titel-ID: cdi_proquest_miscellaneous_2640991589
Format

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX