Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Formation of anaerobic granular sludge (AnGS) to treat high-strength perchlorate wastewater via anaerobic baffled reactor (ABR) system: Electron transfer characteristic, bacterial community and positive feedback mechanism
Ist Teil von
The Science of the total environment, 2022-07, Vol.828, p.154531-154531, Article 154531
Ort / Verlag
Netherlands: Elsevier B.V
Erscheinungsjahr
2022
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
Anaerobic granular sludge (AnGS) was cultured to treat high-strength perchlorate (reaching to 4800 mg/L) wastewater by an anaerobic baffled reactor (ABR) system with five equal-volume compartments (C1–C5 compartments). Inoculated sludge completely granulated on day 104 with granule size of 0.50–0.75 mm and perchlorate removal efficiency reaching to 97% (influent perchlorate of 2000–4800 mg/L). The Cyclic voltammetry (CV) capacitance increased from 487.5, 465.8 and 407.8 μF to 576.5, 552.4, 549.6 μF in C1, C3 and C5 compartments of ABR system, respectively, suggesting the electron transfer capacity was enhanced under high-strength perchlorate stress. Meanwhile, adenosine triphosphate (ATP) value and electron transport system activity (ETSA) increased to 25.05, 22.87, 20.43 and 6.22, 4.87, 3.95 of C1, C3 and C5 compartments, respectively. The results suggested that high-strength perchlorate stress improved the microbial metabolic activity, which promoted secretion of extracellular polymeric substances (EPS). The more EPS could facilitate the formation and stability of AnGS under high-strength perchlorate stress. In addition, more reasonable metabolic division of labor in functional bacterial (Thauera and Comamonas) was beneficial to AnGS formation, which achieved high-strength perchlorate efficient removal. Finally, a positive feedback mechanism between AnGS formation and high-strength perchlorate removal was established through EPS, microbial metabolic activity and electron transfer characteristic in ABR system. However, excessive perchlorate (5800 mg/L) would exceed the treatment capacity of AnGS, which resulted in the deterioration of removal performance. This work provided an effective information for AnGS application to treat high-strength perchlorate wastewater.
[Display omitted]
•AnGS was cultured to treat high-strength perchlorate wastewater.•More EPS secretion contributed to AnGS formation.•High-strength perchlorate stress improved microbial metabolic activity.•The improvement of electron transfer efficiency promoted perchlorate AnGS formation.•Positive feedback mechanism between AnGS and high-strength perchlorate was found.